Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.144
Filtrar
1.
Life Sci ; 345: 122607, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583857

RESUMO

Diabetes mellitus is a disorder characterised metabolic dysfunction that results in elevated glucose level in the bloodstream. Diabetes is of two types, type1 and type 2 diabetes. Obesity is considered as one of the major reasons intended for incidence of diabetes hence it turns out to be essential to study about the adipose tissue which is responsible for fat storage in body. Adipose tissues play significant role in maintaining the balance between energy stabilization and homeostasis. The three forms of adipose tissue are - White adipose tissue (WAT), Brown adipose tissue (BAT) and Beige adipose tissue (intermediate form). The amount of BAT gets reduced, and WAT starts to increase with the age. WAT when exposed to certain stimuli gets converted to BAT by the help of certain transcriptional regulators. The browning of WAT has been a matter of study to treat the metabolic disorders and to initiate the expenditure of energy. The three main regulators responsible for the browning of WAT are PRDM16, PPARγ and PGC-1α via various cellular and molecular mechanism. Presented review article includes the detailed elaborative aspect of genes and proteins involved in conversion of WAT to BAT.


Assuntos
Tecido Adiposo Marrom , Diabetes Mellitus Tipo 2 , Humanos , Tecido Adiposo Marrom/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Adiposidade , Fatores de Transcrição/metabolismo , Tecido Adiposo Branco/metabolismo , Termogênese/genética
2.
Sci Rep ; 14(1): 7670, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561446

RESUMO

Dietary factors such as food texture affect feeding behavior and energy metabolism, potentially causing obesity and type 2 diabetes. We previously found that rats fed soft pellets (SPs) were neither hyperphagic nor overweight but demonstrated glucose intolerance, insulin resistance, and hyperplasia of pancreatic ß-cells. In the present study, we investigated the mechanism of muscle atrophy in rats that had been fed SPs on a 3-h time-restricted feeding schedule for 24 weeks. As expected, the SP rats were normal weight; however, they developed insulin resistance, glucose intolerance, and fat accumulation. In addition, skeletal muscles of SP rats were histologically atrophic and demonstrated disrupted insulin signaling. Furthermore, we learned that the muscle atrophy of the SP rats developed via the IL-6-STAT3-SOCS3 and ubiquitin-proteasome pathways. Our data show that the dietary habit of consuming soft foods can lead to not only glucose intolerance or insulin resistance but also muscle atrophy.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Resistência à Insulina , Ratos , Animais , Resistência à Insulina/fisiologia , Intolerância à Glucose/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Dieta , Dieta Hiperlipídica
3.
Biochem Biophys Res Commun ; 709: 149833, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38574608

RESUMO

In people living with diabetes, impaired wound healing is a major concern as the formation of ulcerated wounds can drastically reduce both the effectiveness of the healing process and the quality of life of the patient. The healing of dermal wounds in particular involves a patient's fibroblasts building up a strong extracellular matrix of mostly collagen I and collagen III fibers, which the cells of diabetic patients struggle to do. Extracellular matrix stiffness, and growth substrate stiffness in general, have already been shown to have a significant effect on the growth and development of already existent cells, and in diabetic dermal fibroblasts, morphological and physiological characteristics associated with the healing process appear to be altered from their healthy state. In this study we utilized a PDMS surface with a stiffness comparable to a wound environment (16 kPa) and a softer surface (0.2 kPa) to study the effects on diabetic and normal fibroblasts. We found diabetic fibroblast morphology became more fibroblast like when placed on the softer surfaces. This was demonstrated by a 15.6% decrease in the aspect ratio and a 16.4% increase in the circularity. The presence of the stress fibers was decreased by 19.4% in diabetic fibroblasts when placed on a softer surface. The proliferation rate of the diabetic fibroblasts was unaffected by the change in stiffness, but the metabolic activity greatly decreased (76%) on the softer surface. The results suggest that the softer surface may have a therapeutic effect on diabetic fibroblast metabolic activity. Further studies could focus on investigating this relationship and utilize it in tunable biomaterials to facilitate and accelerate the healing process for diabetic wounds.


Assuntos
Diabetes Mellitus Tipo 2 , Qualidade de Vida , Humanos , Fibroblastos/metabolismo , Colágeno Tipo I/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fenótipo
4.
Biochem Biophys Res Commun ; 710: 149882, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38583231

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease associated with type 2 diabetes mellitus (T2D). NAFLD can progress to nonalcoholic steatohepatitis (NASH), cirrhosis, and even cancer, all of which have a very poor prognosis. Semaglutide, a novel glucagon-like peptide-1 (GLP-1) receptor agonist, has been recognized as a specific drug for the treatment of diabetes. In this study, we used a gene mutation mouse model (db/db mice) to investigate the potential liver-improving effects of semaglutide. The results showed that semaglutide improved lipid levels and glucose metabolism in db/db mice. HE staining and oil red staining showed alleviation of liver damage and reduction of hepatic lipid deposition after injection of semaglutide. In addition, semaglutide also improved the integrity of gut barrier and altered gut microbiota, especially Alloprevotella, Alistpes, Ligilactobacillus and Lactobacillus. In summary, our findings validate that semaglutide induces modifications in the composition of the gut microbiota and ameliorates NAFLD, positioning it as a promising therapeutic candidate for addressing hepatic steatosis and associated inflammation.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Peptídeos Semelhantes ao Glucagon , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Lipídeos/farmacologia , Camundongos Endogâmicos C57BL
5.
Front Endocrinol (Lausanne) ; 15: 1359147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586449

RESUMO

Introduction: Proinflammatory cytokines are implicated in pancreatic ß cell failure in type 1 and type 2 diabetes and are known to stimulate alternative RNA splicing and the expression of nonsense-mediated RNA decay (NMD) components. Here, we investigate whether cytokines regulate NMD activity and identify transcript isoforms targeted in ß cells. Methods: A luciferase-based NMD reporter transiently expressed in rat INS1(832/13), human-derived EndoC-ßH3, or dispersed human islet cells is used to examine the effect of proinflammatory cytokines (Cyt) on NMD activity. The gain- or loss-of-function of two key NMD components, UPF3B and UPF2, is used to reveal the effect of cytokines on cell viability and function. RNA-sequencing and siRNA-mediated silencing are deployed using standard techniques. Results: Cyt attenuate NMD activity in insulin-producing cell lines and primary human ß cells. These effects are found to involve ER stress and are associated with the downregulation of UPF3B. Increases or decreases in NMD activity achieved by UPF3B overexpression (OE) or UPF2 silencing raise or lower Cyt-induced cell death, respectively, in EndoC-ßH3 cells and are associated with decreased or increased insulin content, respectively. No effects of these manipulations are observed on glucose-stimulated insulin secretion. Transcriptomic analysis reveals that Cyt increases alternative splicing (AS)-induced exon skipping in the transcript isoforms, and this is potentiated by UPF2 silencing. Gene enrichment analysis identifies transcripts regulated by UPF2 silencing whose proteins are localized and/or functional in the extracellular matrix (ECM), including the serine protease inhibitor SERPINA1/α-1-antitrypsin, whose silencing sensitizes ß-cells to Cyt cytotoxicity. Cytokines suppress NMD activity via UPR signaling, potentially serving as a protective response against Cyt-induced NMD component expression. Conclusion: Our findings highlight the central importance of RNA turnover in ß cell responses to inflammatory stress.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Insulinas , Humanos , Ratos , Animais , RNA/metabolismo , Células Secretoras de Insulina/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Insulinas/metabolismo , Proteínas de Ligação a RNA/genética
6.
Proc Natl Acad Sci U S A ; 121(16): e2400077121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598345

RESUMO

Type 2 alveolar epithelial cells (AEC2s) are stem cells in the adult lung that contribute to lower airway repair. Agents that promote the selective expansion of these cells might stimulate regeneration of the compromised alveolar epithelium, an etiology-defining event in several pulmonary diseases. From a high-content imaging screen of the drug repurposing library ReFRAME, we identified that dipeptidyl peptidase 4 (DPP4) inhibitors, widely used type 2 diabetes medications, selectively expand AEC2s and are broadly efficacious in several mouse models of lung damage. Mechanism of action studies revealed that the protease DPP4, in addition to processing incretin hormones, degrades IGF-1 and IL-6, essential regulators of AEC2 expansion whose levels are increased in the luminal compartment of the lung in response to drug treatment. To selectively target DPP4 in the lung with sufficient drug exposure, we developed NZ-97, a locally delivered, lung persistent DPP4 inhibitor that broadly promotes efficacy in mouse lung damage models with minimal peripheral exposure and good tolerability. This work reveals DPP4 as a central regulator of AEC2 expansion and affords a promising therapeutic approach to broadly stimulate regenerative repair in pulmonary disease.


Assuntos
Células Epiteliais Alveolares , Diabetes Mellitus Tipo 2 , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Dipeptidil Peptidase 4/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Pulmão/metabolismo , Modelos Animais de Doenças
7.
Biophys Chem ; 309: 107235, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608617

RESUMO

The misfolding and aggregation of human islet amyloid polypeptide (hIAPP), also known as amylin, have been implicated in the pathogenesis of type 2 diabetes (T2D). Heat shock proteins, specifically, heat shock cognate 70 (Hsc70), are molecular chaperones that protect against hIAPP misfolding and inhibits its aggregation. Nevertheless, there is an incomplete understanding of the mechanistic interactions between Hsc70 domains and hIAPP, thus limiting their potential therapeutic role in diabetes. This study investigates the inhibitory capacities of different Hsc70 variants, aiming to identify the structural determinants that strike a balance between efficacy and cytotoxicity. Our experimental findings demonstrate that the ATPase activity of Hsc70 is not a pivotal factor for inhibiting hIAPP misfolding. We underscore the significance of the C-terminal substrate-binding domain of Hsc70 in inhibiting hIAPP aggregation, emphasizing that the removal of the lid subdomain diminishes the inhibitory effect of Hsc70. Additionally, we employed atomistic discrete molecular dynamics simulations to gain deeper insights into the interaction between Hsc70 variants and hIAPP. Integrating both experimental and computational findings, we propose a mechanism by which Hsc70's interaction with hIAPP monomers disrupts protein-protein connections, primarily by shielding the ß-sheet edges of the Hsc70-ß-sandwich. The distinctive conformational dynamics of the alpha helices of Hsc70 potentially enhance hIAPP binding by obstructing the exposed edges of the ß-sandwich, particularly at the ß5-ß8 region along the alpha helix interface. This, in turn, inhibits fibril growth, and similar results were observed following hIAPP dimerization. Overall, this study elucidates the structural intricacies of Hsc70 crucial for impeding hIAPP aggregation, improving our understanding of the potential anti-aggregative properties of molecular chaperones in diabetes treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Diabetes Mellitus Tipo 2/metabolismo , Simulação de Dinâmica Molecular , Resposta ao Choque Térmico , Chaperonas Moleculares/metabolismo
8.
Mol Med Rep ; 29(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38606791

RESUMO

Obesity reaches up to epidemic proportions globally and increases the risk for a wide spectrum of co­morbidities, including type­2 diabetes mellitus (T2DM), hypertension, dyslipidemia, cardiovascular diseases, non­alcoholic fatty liver disease, kidney diseases, respiratory disorders, sleep apnea, musculoskeletal disorders and osteoarthritis, subfertility, psychosocial problems and certain types of cancers. The underlying inflammatory mechanisms interconnecting obesity with metabolic dysfunction are not completely understood. Increased adiposity promotes pro­inflammatory polarization of macrophages toward the M1 phenotype, in adipose tissue (AT), with subsequent increased production of pro­inflammatory cytokines and adipokines, inducing therefore an overall, systemic, low­grade inflammation, which contributes to metabolic syndrome (MetS), insulin resistance (IR) and T2DM. Targeting inflammatory mediators could be alternative therapies to treat obesity, but their safety and efficacy remains to be studied further and confirmed in future clinical trials. The present review highlights the molecular and pathophysiological mechanisms by which the chronic low­grade inflammation in AT and the production of reactive oxygen species lead to MetS, IR and T2DM. In addition, focus is given on the role of anti­inflammatory agents, in the resolution of chronic inflammation, through the blockade of chemotactic factors, such as monocytes chemotractant protein­1, and/or the blockade of pro­inflammatory mediators, such as IL­1ß, TNF­α, visfatin, and plasminogen activator inhibitor­1, and/or the increased synthesis of adipokines, such as adiponectin and apelin, in obesity­associated metabolic dysfunction.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Síndrome Metabólica , Humanos , Obesidade/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Inflamação/metabolismo , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Mediadores da Inflamação/metabolismo
9.
Front Immunol ; 15: 1381227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638434

RESUMO

Obesity presents a significant global health challenge, increasing the susceptibility to chronic conditions such as diabetes, cardiovascular disease, and hypertension. Within the context of obesity, lipid metabolism, adipose tissue formation, and inflammation are intricately linked to endoplasmic reticulum stress (ERS). ERS modulates metabolism, insulin signaling, inflammation, as well as cell proliferation and death through the unfolded protein response (UPR) pathway. Serving as a crucial nexus, ERS bridges the functionality of adipose tissue and the inflammatory response. In this review, we comprehensively elucidate the mechanisms by which ERS impacts adipose tissue function and inflammation in obesity, aiming to offer insights into targeting ERS for ameliorating metabolic dysregulation in obesity-associated chronic diseases such as hyperlipidemia, hypertension, fatty liver, and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Inflamação/metabolismo
10.
Cell Physiol Biochem ; 58(2): 144-155, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38639210

RESUMO

Diabetes mellitus type 1 (T1D) and type 2 (T2D) develop due to dysfunction of the Langerhans islet ß-cells in the pancreas, and this dysfunction is mediated by oxidative, endoplasmic reticulum (ER), and mitochondrial stresses. Although the two types of diabetes are significantly different, ß-cell failure and death play a key role in the pathogenesis of both diseases, resulting in hyperglycemia due to a reduced ability to produce insulin. In T1D, ß-cell apoptosis is the main event leading to hyperglycemia, while in T2D, insulin resistance results in an inability to meet insulin requirements. It has been suggested that autophagy promotes ß-cell survival by delaying apoptosis and providing adaptive responses to mitigate the detrimental effects of ER stress and DNA damage, which is directly related to oxidative stress. As people with diabetes are now living longer, they are more susceptible to a different set of complications. There has been a diversification in causes of death, whereby a larger proportion of deaths among individuals with diabetes is attributable to nonvascular conditions; on the other hand, the proportion of cancer-related deaths has remained stable or even increased in some countries. Due to the increasing cases of both T1D and T2D, these diseases become even more socially significant. Hence, we believe that search for any opportunities for control of this disease is an overwhelmingly important target for the modern science. We focus on two differences that are characteristic of the development of diabetes's last periods. One of them shows that all-cause death rates have declined in several diabetes populations, driven in part by large declines in vascular disease mortality but large increases in oncological diseases. Another hypothesis is that some T2D medications could be repurposed to control glycemia in patients with T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Hiperglicemia , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Morte Celular , Insulina/metabolismo , Hiperglicemia/metabolismo , Estresse Oxidativo
11.
BMJ Open Diabetes Res Care ; 12(2)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38575156

RESUMO

INTRODUCTION: Diabetic kidney disease (DKD) is a major complication in patients with diabetes and the main contributor to the chronic kidney disease (CKD) global burden. Oxidative stress is a crucial factor in DKD pathogenesis but the role of the antioxidant nuclear factor erythroid 2-related factor 2 (Nrf2) and its molecular regulators has been poorly investigated in man. RESEARCH DESIGN AND METHODS: In this case-control study, we analyzed the roles of Nrf2, a transcription factor shielding cells from oxidative stress, its repressor Kelch-like ECH-associated protein 1 (Keap1) and six microRNAs (miRNAs) that potentially suppress Nrf2. We categorized 99 participants into 3 groups: 33 non-dialysis patients with type 2 diabetes with DKD, 33 patients with type 2 diabetes without DKD and 33 control subjects and quantified the gene expression (messenger RNA (mRNA)) levels of Nrf2, Keap1 and 6 miRNAs. Moreover, we studied the correlation between gene expression levels and clinical indicators of kidney health. RESULTS: In patients with diabetes with DKD, Nrf2 mRNA levels were significantly lower than in patients without DKD (p=0.01) and controls (p=0.02), whereas no difference in Nrf2 expression levels existed between patients without DKD and controls. Conversely, in patients with and without DKD, Keap1 expression levels were significantly higher than in controls. Of the six miRNAs studied, miRNA 30e-5p showed differential expression, being markedly reduced in patients with DKD (p=0.007). Nrf2 mRNA levels directly correlated with estimated glomerular filtration rate (eGFR) in patients with DKD (r=0.34, p=0.05) and in a formal mediation analysis the eGFR emerged as the first factor in rank for explaining the difference in Nrf2 mRNA levels between patients with and without DKD. CONCLUSIONS: The observed dysregulation in the Nrf2-Keap1 axis and the unique expression pattern of miRNA30e-5p in DKD underscore the need for more focused research in this domain that can help identify novel intervention strategies for DKD in patients with type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Humanos , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/patologia , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , RNA Mensageiro/genética
12.
Biol Pharm Bull ; 47(4): 791-795, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38583950

RESUMO

The number of patients with type 2 diabetes is increasing worldwide. The mechanisms leading to type 2 diabetes and its complications is being researched; however, the pathological mechanisms of diabetes in the small intestine remain unclear. Therefore, we examined these pathological mechanisms in the small intestine using a mouse model of type 2 diabetes (KK-Ay/TaJcl) aged 10 and 50 weeks. The results showed that diabetes worsened with age in the mice with type 2 diabetes. In these mice, advanced glycation end products (AGEs) in the small intestine and mast cell expression increased, whereas diamine oxidase (DAO) decreased; increased tumor necrosis factor (TNF)-α and histamine levels in the plasma and small intestine were also detected. Additionally, the expression of zonula occludens (ZO)-1 and Claudin1 and cell adhesion molecules in the small intestine reduced. These results exacerbated with age. These findings indicate that type 2 diabetes causes AGE/mast cell/histamine and TNF-α signal transmission in the small intestine and decreases small intestinal wall cell adhesion molecules cause TNF-α and histamine to flow into the body, worsening the diabetic condition. In addition, this sequence of events is suggested to be strengthened in aged mice with type 2 diabetes, thus exacerbating the disease. These findings of this study may facilitate the elucidation of the pathological mechanisms of type 2 diabetes and its associated complications.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Histamina/metabolismo , Intestino Delgado/metabolismo , Moléculas de Adesão Celular , Produtos Finais de Glicação Avançada/metabolismo
13.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1587-1593, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621943

RESUMO

This study aims to explore the effect of Zuogui Jiangtang Qinggan Formula(ZGJTQGF) on the lipid metabolism in the db/db mouse model of type 2 diabetes mellitus(T2DM) complicated with non-alcoholic fatty liver disease(NAFLD) via the insulin receptor(INSR)/adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK)/sterol-regulatory element-binding protein 2(SREBP-2) signaling pathway. Twenty-four db/db mice were randomized into positive drug(metformin, 0.067 g·kg~(-1)) and low-(7.5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) ZGJTQGF groups. Six C57 mice were used as the blank group and administrated with an equal volume of distilled water. The mice in other groups except the blank group were administrated with corresponding drugs by gavage for 6 consecutive weeks. At the end of drug administration, fasting blood glucose(FBG) and blood lipid levels were measured, and oral glucose tolerance test was performed. Compared with the blank group, the mice treated with ZGJTQGF showed decreased body mass and liver weight coefficient, lowered levels of FBG, total cholesterol(TC), triglyceride(TG), and low-density lipoprotein(LDL), and weakened liver function. The pathological changes and lipid accumulation in the liver tissue were examined. Western blot was employed to measure the protein levels of INSR, AMPK, p-AMPK, and SREBP-2. Compared with the blank group, the model group showed down-regulated protein levels of INSR and p-AMPK/AMPK and up-regulated protein level of SREBP-2. Compared with the model group, high-dose ZGJTQGF up-regulated the protein levels of INSR and p-AMPK/AMPK and down-regulated the protein level of SREBP-2. Low-dose ZGJTQGF slightly up-regulated the protein levels of INSR and p-AMPK/AMPK and down-regulated the protein level of SREBP-2, without significant differences. The results suggested that ZGJTQGF may alleviate insulin resistance and improve lipid metabolism in db/db mice by activating the INSR/AMPK/SREBP-2 signaling pathway.


Assuntos
Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo dos Lipídeos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fígado , Lipídeos
14.
Sci Rep ; 14(1): 8043, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580733

RESUMO

Bisphenol-A (BPA) is widely used in food packaging and household products, leading to daily human exposure and potential health risks including metabolic diseases like type 2 diabetes mellitus (T2DM). Understanding BPA's mechanisms and developing intervention strategies is urgent. Centella asiatica, a traditional herbal medicine containing pentacyclic triterpenoids, shows promise due to its antioxidant and anti-inflammatory properties, utilized for centuries in Ayurvedic therapy. We investigated the effect of Centella asiatica (CA) ethanol extract on BPA-induced pancreatic islet toxicity in male Swiss albino mice. BPA administration (10 and 100 µg/kg body weight, twice daily) for 21 days caused glucose homeostasis disturbances, insulin resistance, and islet dysfunction, which were partially mitigated by CA supplementation (200 and 400 mg/kg body weight). Additionally, heightened oxidative stress, elevated levels of proinflammatory cytokines, loss of mitochondrial membrane potential (MMP), abnormal cell cycle, and increased apoptosis were implicated in the detrimental impact of BPA on the endocrine pancreas which were effectively counteracted by CA supplementation. In summary, CA demonstrated a significant ability to mitigate BPA-induced apoptosis, modulate redox homeostasis, alleviate inflammation, preserve MMP, and regulate the cell cycle. As a result, CA emerged as a potent agent in neutralizing the diabetogenic effects of BPA to a considerable extent.


Assuntos
Centella , Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Fenóis , Camundongos , Animais , Masculino , Humanos , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Compostos Benzidrílicos/farmacologia , Peso Corporal
15.
BMC Oral Health ; 24(1): 356, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509482

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) causes severe bone loss after tooth extraction as a hyperglycemic environment causes aberrant bone homeostasis. Artesunate (ART) is known to possess anti-inflammation and osteogenic properties. However, its osteogenesis property in alveolar bone remains unclear. This study aimed to explore the osteogenic and immunoregulatory effects of artesunate-loaded thermosensitive chitosan hydrogel (ART-loaded TCH) on maxilla tooth extraction in T2DM rats. METHODS: T2DM rats were induced by a high-fat diet and streptozotocin. Different concentrations of ART-loaded TCH were applied in tooth extraction sockets. Bone loss and the expression of osteogenic regulatory factors (OPG, ALP, RANK) were evaluated. The immunoregulatory effects of ART-loaded TCH were observed through detecting the infiltration of T lymphocytes and their cytokines. The underlying mechanisms were explored. RESULTS: Results showed that the 150 mg/ml ART-loaded TCH group significantly ameliorated maxilla bone height and bone mineral density when compared with the T2DM group (p < 0.05). It also improved the expression of OPG, ALP, and RANK. Although the alteration of CD4+ T, CD8+ T, and CD4+:CD8+ T ratio has no significant difference among groups, the release of Th1 and Th2 in the 150 mg/ml ART-loaded TCH group has been significantly regulated than in the T2DM group (p < 0.05). Besides, ART-loaded TCH treatment inhibited the expression of p38 MAPK and ERK1 in T2DM maxilla. CONCLUSIONS: Therefore, the results indicated that 150 mg/ml ART-loaded TCH could be an effective method to prevent bone loss in T2DM tooth extraction rats by modulating the immunoregulation of Th1 and Th2 and the MAPK signaling pathway.


Assuntos
Quitosana , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Animais , Osteogênese , Hidrogéis/farmacologia , Quitosana/uso terapêutico , Quitosana/farmacologia , Artesunato/uso terapêutico , Artesunato/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Maxila , Linfócitos T/metabolismo , Extração Dentária/métodos
16.
Microbiol Res ; 282: 127667, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442456

RESUMO

The interaction of iron and intestinal flora, both of which play crucial roles in many physiologic processes, is involved in the development of Metabolic syndrome (MetS). MetS is a pathologic condition represented by insulin resistance, obesity, dyslipidemia, and hypertension. MetS-related comorbidities including type 2 diabetes mellitus (T2DM), obesity, metabolism-related fatty liver (MAFLD), hypertension polycystic ovary syndrome (PCOS), and so forth. In this review, we examine the interplay between intestinal flora and human iron metabolism and its underlying mechanism in the pathogenesis of MetS-related comorbidities. The composition and metabolites of intestinal flora regulate the level of human iron by modulating intestinal iron absorption, the factors associated with iron metabolism. On the other hand, the iron level also affects the abundance, composition, and metabolism of intestinal flora. The crosstalk between these factors is of significant importance in human metabolism and exerts varying degrees of influence on the manifestation and progression of MetS-related comorbidities. The findings derived from these studies can enhance our comprehension of the interplay between intestinal flora and iron metabolism, and open up novel potential therapeutic approaches toward MetS-related comorbidities.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hipertensão , Síndrome Metabólica , Feminino , Humanos , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Ferro/metabolismo , Hipertensão/complicações
17.
Nutrients ; 16(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542759

RESUMO

Previous studies have reported the therapeutic effects of oleuropein (OP) consumption on the early stage of diabetic nephropathy and diabetic cardiomyopathy. However, the efficacy of OP on the long-course of these diabetes complications has not been investigated. Therefore, in this study, to investigate the relieving effects of OP intake on these diseases, and to explore the underlying mechanisms, db/db mice (17-week-old) were orally administrated with OP (200 mg/kg bodyweight) for 15 weeks. We found that OP reduced expansion of the glomerular mesangial matrix, renal inflammation, renal fibrosis, and renal apoptosis. Meanwhile, OP treatment exerted cardiac anti-fibrotic, anti-inflammatory, and anti-apoptosis effects. Notably, transcriptomic and bioinformatic analyses indicated 290 and 267 differentially expressed genes in the kidney and heart replying to OP treatment, respectively. For long-course diabetic nephropathy, OP supplementation significantly upregulated the cyclic guanosine monophosphate-dependent protein kinase (cGMP-PKG) signaling pathway. For long-course diabetic cardiomyopathy, p53 and cellular senescence signaling pathways were significantly downregulated in response to OP supplementation. Furthermore, OP treatment could significantly upregulate the transcriptional expression of the ATPase Na+/K+ transporting subunit alpha 3, which was enriched in the cGMP-PKG signaling pathway. In contrast, OP treatment could significantly downregulate the transcriptional expressions of cyclin-dependent kinase 1, G two S phase expressed protein 1, and cyclin B2, which were enriched in p53 and cellular senescence signal pathways; these genes were confirmed by qPCR validation. Overall, our findings demonstrate that OP ameliorated long-course diabetic nephropathy and cardiomyopathy in db/db mice and highlight the potential benefits of OP as a functional dietary supplement in diabetes complications treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Nefropatias Diabéticas , Glucosídeos Iridoides , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/complicações , Proteína Supressora de Tumor p53/metabolismo , Rim/metabolismo
18.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542928

RESUMO

Diabetes, particularly type 2 diabetes (T2D), is the main component of metabolic syndrome. It is highly prevalent and has drastically increased with sedentary lifestyles, notably behaviors linked to ease of access and minimal physical activity. Central to this condition is insulin, which plays a pivotal role in regulating glucose levels in the body by aiding glucose uptake and storage in cells, and what happens to diabetes? In diabetes, there is a disruption and malfunction in insulin regulation. Despite numerous efforts, effectively addressing diabetes remains a challenge. This article explores the potential of photoactivatable drugs in diabetes treatment, with a focus on light-activated insulin. We discuss its advantages and significant implications. This article is expected to enrich the existing literature substantially, offering a comprehensive analysis of potential strategies for improving diabetes management. With its minimal physical intrusion, light-activated insulin promises to improve patient comfort and treatment adherence. It offers precise regulation and localized impact, potentially mitigating the risks associated with conventional diabetes treatments. Additionally, light-activated insulin is capable of explicitly targeting RNA and epigenetic factors. This innovative approach may pave the way for more personalized and effective diabetes treatments, addressing not only the symptoms but also the underlying biological causes of the disease. The advancement of light-activated insulin could revolutionize diabetes management. This study represents a pioneering introduction to this novel modality for diabetes management.


Assuntos
Diabetes Mellitus Tipo 2 , Insulina , Humanos , Insulina/metabolismo , Glicemia , Diabetes Mellitus Tipo 2/metabolismo , Exercício Físico
19.
J Agric Food Chem ; 72(12): 6339-6346, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38488910

RESUMO

There are many complications of type 2 diabetes mellitus. Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are two complications related to the increased lipid accumulation in the liver. Previous studies have shown that mulberry leaf water extract (MLE) has the effect of lowering lipid levels in peripheral blood, inhibiting the expression of fatty acid synthase (FASN) and increasing the activity of liver antioxidant enzymes superoxide dismutase (SOD) and catalase. Our study aimed to investigate the role of MLE and its main component, neochlorogenic acid (nCGA), in reducing serum lipid profiles, decreasing lipid deposition in the liver, and improving steatohepatitis levels. We evaluated the antioxidant activity including glutathione (GSH), glutathione reductase (GRd), glutathione peroxidase (GPx), glutathione S-transferase (GST), and superoxide dismutase (SOD), and catalase was tested in mice fed with MLE and nCGA. The results showed a serum lipid profile, and fatty liver scores were significantly increased in the HFD group compared to the db/m and db mice groups, while liver antioxidant activity significantly decreased in the HFD group. When fed with HFD + MLE or nCGA, there was a significant improvement in serum lipid profiles, liver fatty deposition conditions, steatohepatitis levels, and liver antioxidant activity compared to the HFD group. Although MLE and nCGA do not directly affect the blood sugar level of db/db mice, they do regulate abnormalities in lipid metabolism. These results demonstrate the potential of MLE/nCGA as a treatment against glucotoxicity-induced diabetic fatty liver disease in animal models.


Assuntos
Ácido Clorogênico/análogos & derivados , Diabetes Mellitus Tipo 2 , Morus , Hepatopatia Gordurosa não Alcoólica , Ácido Quínico/análogos & derivados , Camundongos , Animais , Catalase/metabolismo , Morus/metabolismo , Antioxidantes/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Lipídeos/farmacologia , Folhas de Planta/metabolismo , Camundongos Endogâmicos C57BL
20.
Life Sci ; 345: 122565, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38521388

RESUMO

Phosphodiesterase 4 (PDE4), crucial in regulating the cyclic adenosine monophosphate (cAMP) signaling pathway, significantly impacts liver pathophysiology. This article highlights the comprehensive effects of PDE4 on liver health and disease, and its potential as a therapeutic agent. PDE4's role in degrading cAMP disrupts intracellular signaling, increasing pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). This contributes to liver inflammation in conditions such as hepatitis and non-alcoholic steatohepatitis (NASH). Additionally, PDE4 is a key factor in liver fibrosis, characterized by excessive extracellular matrix deposition. Inhibiting PDE4 shows promise in reducing liver fibrosis by decreasing the activation of hepatic stellate cells, which is pivotal in fibrogenesis. PDE4 also influences hepatocyte apoptosis a common feature of liver diseases. PDE4 inhibitors protect against hepatocyte apoptosis by raising intracellular cAMP levels, thus activating anti-apoptotic pathways. This suggests potential in targeting PDE4 to prevent hepatocyte loss. Moreover, PDE4 regulates hepatic glucose production and lipid metabolism, essential for liver function. Altering cAMP levels through PDE4 affects enzymes in these metabolic pathways, making PDE4 a target for metabolic disorders like type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Since PDE4 plays a multifaceted role in liver pathophysiology, influencing PDE4's mechanisms in liver diseases could lead to novel therapeutic strategies. Still, extensive research is required to explore the molecular mechanisms and clinical potential of targeting PDE4 in liver pathologies.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatite , Hepatopatia Gordurosa não Alcoólica , Humanos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatite/patologia , Cirrose Hepática/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...